6/8/11

El significado Real de la Geometría de Lobatchevsky


  En 1868 el italiano Eugenio Beltrami publicó Ensayo sobre la interpretación de la Geometría no euclídea, que proporcionó un modelo para la geometría no-euclidiana de Lobatchevsky dentro de la geometría euclídea 3-dimensional.
clip_image009
Fotografía de Beltrami
Obra
Consideró una curva llamada tractriz (ver FIGURA 5). Una de las propiedades de esta curva es que la longitud del segmento de tangente comprendido entre el punto de tangencia y el punto de corte con el eje OY es constante. El eje OY es una asíntota. Al girar la curva alrededor de su asíntota se engendra una superficie llamada seudoesfera, representada en la parte derecha de la FIGURA 5.
clip_image010
FIGURA 5: Tractriz y seudoesfera
Beltrami hizo notar que la geometría intrínseca de la seudoesfera coincide con la geometría sobre parte del plano de Lobatchevsky. De este modo, esta geometría no euclidiana tiene un perfecto significado real: no es más que una exposición abstracta de la geometría sobre la seudoesfera.
         Pero, como hemos mencionado con anterioridad, Beltrami sólo estableció una correspondencia entre la seudoesfera y parte del plano de Lobatchevsky. El problema de dar
una interpretación real a todo el plano y el espacio quedaba sin solventarse. La solución fue dada más tarde por el matemático alemán Klein (1849-1925).
         Las ideas más generales del modelo que propuso Klein en 1870 para esta particular geometría son las siguientes: En un plano usual tomamos el interior de un círculo; un punto se considera como un punto; una recta, como una cuerda (excluyendo los extremos); un movimiento se toma como una transformación que transforma el círculo en sí mismo y las cuerdas en cuerdas; la situación de los puntos (un punto está sobre una recta; un punto está entre otros dos) se considera con el sentido usual. La regla para medir longitudes y ángulos (y también áreas) se deduce de la forma en que se definen los movimientos; la igualdad de segmentos y ángulos (o de figuras arbitrarias) también se define, y esta misma definición es aplicable a la operación de transportar un segmento a lo largo de otro.
         Con todas estas condiciones, a cada teorema de la geometría de Lobatchevsky en el plano corresponde un hecho verdadero de la geometría de Euclides dentro del círculo, y viceversa: todo hecho de este tipo se puede reinterpretar en forma de un teorema de la geometría de Lobatchevsky.
         Pero aún fue más lejos: diseñó un modelo para el espacio de esta geometría. Análogamente al caso del plano, consideró una el interior de una esfera (ver FIGURA 6).
clip_image011
FIGURA 6: La Esfera de Klein
         Una recta se interpreta como una cuerda, un plano como un círculo cuya circunferencia esté sobre la esfera; pero la superficie de la esfera, y por tanto los puntos extremos de las cuerdas y las circunferencias de esos círculos, se excluyen; finalmente, un movimiento se define como una transformación de la esfera en sí misma que transforma cuerdas en cuerdas.
         Cuando se dio este modelo de la geometría de Lobatchevsky se estableció al mismo tiempo que su geometría tiene un significado real sencillo. La geometría de Lobatchevsky es válida porque se puede tomar como exposición concreta de la geometría en un círculo o en una esfera. Al mismo tiempo se probó su carácter no contradictorio: sus resultados no pueden llevar a contradicciones porque cada uno de ellos se puede trasladar al lenguaje de la geometría euclidiana ordinaria dentro del círculo (o una esfera si se trata de la geometría de Lobatchevsky en el espacio).  

Geometría de Riemann.

Biografía

Riemann (1826-1866) Nació: 17 de Septiembre 1826 en Breselenz, Hannover (Ahora Alemania), Falleció: 20 de Julio 1866 en Selasca, Italia escribió su tesis doctoral bajo la supervisión de Gauss, dio una clase inaugural en la que reformuló todo el concepto de la geometría, que el veía como un espacio con la suficiente estructura adicional para poder medir cosas como la longitud. Esta lección no se publicó hasta 1868, dos años después de la muerte de Riemann, pero había de tener una profunda influencia en el desarrollo de las diferentes geometrías. Riemann trató brevemente una geometría 'esférica' en la que cada línea que pasaba por un punto P exterior a una recta AB se cruzaba con la recta AB. En esta geometría no existían las paralelas.
clip_image012

Obra
Tal vez su más conocida aportación fue su geometría no euclidiana, basada en una axiomática distinta de la propuesta por Euclides, y expuesta detalladamente en su célebre memoria Sobre las hipótesis que sirven de fundamento a la geometría. Esta geometría se sigue si se considera la superficie de una esfera y se restringen las figuras a esa superficie. Medio siglo más tarde, Einstein demostró, en virtud de su modelo de espacio-tiempo relativista, que la geometría de Riemann ofrece una representación más exacta del universo que la de Euclides. Murió de tuberculosis antes de cumplir los cuarenta años.

No hay comentarios.:

Publicar un comentario

Eres el visitante #